Volez.net : Apprenez rapidement et facilement à piloter un avion

Les expressions de la portance et de la traînée

Phraséologie Anglaise

Vous voulez préparer l'examen d'anglais aeronautique ?

Recevez une documentation et un essai gratuit
de ce nouvel outil performant pour réviser vos connaissances
en phraséologie anglaise et même pour débuter à zéro.

:
:

Nous ne communiquerons jamais votre Email à un tiers

Coefficients de portance et de traînée

La résistance de l'air ou résultante aérodynamique qui s'exerce sur un profil est donnée par l'expression :

R = C.Pd.S

dans laquelle :

  • Pd est la pression dynamique du vent relatif (voir § 2.5.2) : Pd = ½..V² ,
  • S est la surface alaire,
  • C est un coefficient propre à chaque profil et variant avec l'angle d'attaque.

La résultante aérodynamique étant décomposée en une PORTANCE et une TRAINEE, on peut aussi décomposer le coefficient C en un "coefficient de PORTANCE" (CL) et un "coefficient de TRAINEE" (CD).

D'où les expressions classiques de la PORTANCE et de la TRAINEE :

PORTANCE (LIFT) : L = CL. ½..V².S
TRAINEE (DRAG) : D = CD. ½.
.V².S

L et D s'expriment en Newtons si l'on exprime en kg/m3 , V en m/sec et S en m².

On voit donc que la portance et la traînée, pour une aile de caractéristiques données, sont proportionnelles

  • à la surface alaire (S)
  • au carré de la vitesse du vent relatif ().
  • à la masse volumique de l'air ()

La variation de CL et CD en fonction de l'angle d'attaque peut se déterminer par des essais en soufflerie.

La figure 2.17 donne un exemple de diagramme de CL et CD en fonction de l'angle d'attaque (i), pour un profil dissymétrique courant.


Fig 2.17 Coefficient de PORTANCE et DE TRAINEE ...

On voit que le coefficient de PORTANCE (fig. 2.17) :

 

  • est proportionnel à l'angle d'attaque (droite AB) tant que l'écoulement est laminaire ;
  • augmente ensuite moins rapidement, en écoulement turbulent (entre B et C), pour atteindre son maximum en C, où commence le régime tourbillonnaire et la phase de décrochage ;
  • diminue de C à D (décrochage) où à lieu l'abattée ;
  • est nul pour un petit angle d'attaque négatif ;
  • est positif pour i = 0

On voit également que le coefficient de TRAINEE varie relativement peu dans la zone des petits angles d'attaque, pour augmenter rapidement dans la zone des grands angles. Il n'est jamais nul et passe par un minimum dans la zone des petits angles.

La POLAIRE d'un profil

La variation des coefficients de portance et de traînée en fonction de l'angle d'attaque est souvent représentée sur un seul diagramme.

Un tel diagramme s'appelle la POLAIRE(1) ; c'est une courbe de CD en fonction de CL pour différents angles d'attaque. La figure 2.18 donne, à titre d'exemple, la polaire d'un profil dont les courbes de CL et de CD sont celles de la figure 2.17

L'examen d'une telle courbe permet de définir quelques points caractéristiques :

A = point de portance nulle, correspondant ici à un angle de - 2°

B = point de finesse maximale (v. § 2.9.3) obtenu en traçant la tangente à la polaire, issue de l'origine (O) des axes. Ce point correspond ici à un angle d'attaque de 5°

C = point de portance maximum, correspondant à un angle voisin de 13°, qui détermine le début du décrochage.

D = le point de traînée minimum. Il est ici pratiquement confondu avec le point A de portance nulle.


Fig 2.18 Polaire d'une aile

On constate que le coefficient de traînée augmente relativement peu jusqu'à un angle de 4 à 5°, pour augmenter beaucoup plus rapidement aux grands angles.

La finesse

La FINESSE d'une aile, POUR UN ANGLE D'ATTAQUE DETERMINE, est le rapport f = CL/CD

A chaque angle d'incidence, donc à chaque point de la polaire, correspond une finesse déterminée.

La FINESSE MAXIMALE est obtenue pour l'angle d'attaque correspondant au point B de la polaire situé sur la tangente à la polaire, issue de l'origine des axes. Dans le cas de la Fig. 2.18, on aurait approximativement

fmax = 66 / 5,3 = 12,5 , pour un angle de 5°

Pour tout autre angle d'attaque, la finesse sera toujours inférieure à la finesse maximale.

On notera également que deux points de la polaire interceptés par une droite telle que OX (fig. 2.18) correspondent à des angles d'attaque différents, ici 2° et 10°, avec une même finesse CL/CD = 10.

On peut également établir un diagramme de la finesse en fonction de l'angle d'attaque (fig. 2.19), qui fait mieux apparaître l'existence d'une finesse maximum.


Fig 2.19 Fitnesse d'un profil...

LES SIGNIFICATIONS PHYSIQUES DE LA FINESSE sont les suivantes :

a) Dans l'équation de sustentation d'un avion en descente (voir chapitre 16), la pente de descente s'exprime par le rapport D / L , qui est l'inverse de la finesse ( 1/f ).

On peut donc écrire qu'un avion de finesse 8 aura une pente de descente de 1/8, autrement dit, d'une hauteur de 100 mètres, il pourra planer, par vent nul, jusqu'à une distance de 800 mètres (Fig.2.20).


Fig 2.20

b) Pour un avion en vol rectiligne uniforme horizontal (VRUH), (v.§ 2.3), la traction nécessaire (T) est égale à la traînée (D), tandis que le poids (G) est égal à la portance (L). On a donc :

La traction nécessaire sera donc minimale pour l'angle d'attaque correspondant à la finesse maximale :

Tmin= G / fmax

On voit l'intérêt, pour les constructeurs, de rechercher le maximum de portance pour le minimum de traînée, c'est-à-dire, la meilleure finesse. Il y a cependant une limite car la traînée augmente avec la portance ; le choix d'un profil et d'un allongement résulte donc d'un compromis.

(1) On établit généralement une polaire de profil, une polaire d'aile et une polaire de tout l'avion, intégrant les portances et traînées dues à toutes les parties de l'avion.